
DOCUMENTATION
CEGA: A Cytoscape Layout Plugin using a Memetic

Algorithm

R. Barth & S. Lagarde & S. Rekké

July 2, 2010

1 Introduction

Cytoscape is an open source bioinformatics software platform for visualizing molecular
interaction networks and biological pathways and integrating these networks with anno-
tations, gene expression profiles and other state data. Although Cytoscape was originally
designed for biological research, now it is a general platform for complex network analysis
and visualization. Cytoscape core distribution provides a basic set of features for data
integration and visualization. Additional features are available as plugins. A specific set
of plugins are especially designed for visualizing graphs.

In this documentation, we describe the CEGA Layout plugin for Cytoscape. CEGA
uses a previously proven approach of using memetic algorithms for graph visualization.
We aim to provide a guide to the software for both users and developers. We show how
the user can adjust the importance of fitness measures by scripting their own fitness
function and we show how developers can easily add additional fitness measures.

2 User Manual

Working with the evolutionary Cytoscape Layout plugin is quite easy. In this section we
shall guide you through the general use.

2.1 Installation Instructions

To install the plugin for Cytoscape, be sure you first have Cytoscape installed. Go to the
Cytoscape directory, and add the following files into the Plugins folder: Please restart
Cytoscape if open.

* CEGA.jar (The actual plugin.)

* giny.jar

* jgap.jar

* colt.jar

1

* jung-api-2.0.1.jar

* jung-algorithms-2.0.1.jar

* jung-graph-impl-2.0.1.jar

* ocutil-2.5.2.jar

* asm-all-3.3.jar

2.2 Usage Instructions

Before any layout algorithm can be applied, a network must be loaded. This can be done
by going to the menu and click File -> Import

When a network is loaded, it is first visualized as a rectangular grid of nodes. To better
visualize networks, a Layout plugin can be used. Before applying such Layout algorithm,
first certain settings have to be set. To do this go the menu Layout -> Settings. After
this a window pops up, where you can select an algorithm to view the settings from a
dropdown menu. Choose Memetic Algorithm The following menu should now be seen:

In this settings menu, three subgroups can be distinguished:

• Evolutionary properties

• Fitness function properties

• Fitness measure properties

Evolutionary properties In this group the general evolutionary parameters can be
specified. The population size is defined as the number of individuals of the evolutionary
algorithm. It is recommended due to computational complexity to keep this value medium
(100) for small networks (150 nodes) and low (30) for large networks (150+ nodes). The
larger the number of individuals the more variability in the population exists, possibly
improving searching performance.

The number of generations defines how many times the algorithm optimizes the search
for a optimal graph. The search time linearly increases with the value defined here.
In general and dependent on the complexity of the fitness function defined later, 100
generations takes about 5-10 minutes to complete.

The mutation rate influences the degree of spontaneous changes of any solution graph.
This helps the search by preserving and introducing diversity of solutions. A mutation
rate of 20% is recommended as default.

The tick box for using Local Search, sets the evolutionary algorithm to memetic if set
true. This means that local search is added to find optimal solution. In general, this
is computationally more expensive, however should reduce the overall time needed to
compute an optimal graph. The setting True is recommended.

2

Figure 1: Settings menu for the memetic layout algorithm

Fitness function properties Here a fitness function can be defined. You can either
select a predefined fitness function from the list, or create your own.

Creating a fitness function can be done by combining different fitness measures. Combin-
ing can be done by addition, subtraction, multiplication and dividing by other measures,
or constants. When more complex operators are required, they can be selected from the
following list.

Math.abs(a) // the absolute value of a

Math.acos(a) // arc cosine of a

Math.asin(a) // arc sine of a

Math.atan(a) // arc tangent of a

Math.atan2(a,b) // arc tangent of a/b

Math.ceil(a) // integer closest to a and not less than a

3

Math.cos(a) // cosine of a

Math.exp(a) // exponent of a

Math.floor(a) // integer closest to and not greater than a

Math.log(a) // log of a base e

Math.max(a,b) // the maximum of a and b

Math.min(a,b) // the minimum of a and b

Math.pow(a,b) // a to the power b

Math.random() // pseudorandom number in the range 0 to 1

Math.round(a) // integer closest to a

Math.sin(a) // sine of a

Math.sqrt(a) // square root of a

Math.tan(a) // tangent of a

If you want to define your own function doSomething(), it is recommended to implement
it as a separate fitness measure. How this can be done is described in Section 4.

An example of a combination of measures can be found in the predefined list. For example:

1000 + (1.0*ADTNAV / 1.0*ADTAV) - 5.0*EC - 1.0*ELSTD - 1.0*TEL

It is important to note that the first constant has the goal that the fitness value cannot
drop below zero (a JGAP limitation). Hence subtracting a large result from any measure
could result in a non working algorithm. Measures in the function above all are defined
as capital abbreviations. Each such a measure returns a value, based on graph properties.

When a fitness function is typed in, any constant value before the measure will be updated
as weight in the field of fitness measure properties.

Fitness measure properties In this field all the measures are listed with the corre-
sponding weights as defined in the fitness function. Furthermore, these values can be
adjusted to the field adjacent to the measures. If so, this value is automatically updated
in the fitness function above.

2.2.1 Saving and Running

When all settings are specified, the optimization can be run. Before running, it is recom-
mended to save the settings by clicking on the respective button. Running can be done
by clicking on ‘Execute Layout’. Note that some simulations might take a long time to
compute. However, when you cancel the simulation, the current solution of the graph is
saved and showed.

3 Technical details

For users interested in the technical details, we now further specify how the components
of the plugin are organized. In the Figure 2 the general system architecture is displayed.
The layout plugin is primarily attached to JGAP, which handles to evolutionary processes.
Jung is a graph visualization package, which is used here to solely to add the memetic
part to the algorithm.

4

Cytoscape JGAP

JUNG

Layout
Plugin

(Cytoskeip)

Figure 2: Plugin Architecture

3.1 JGAP

The evolution of graphs is handled by JGAP. JGAP is a Java framework that provides
basic genetic mechanisms that can be easily used to apply evolutionary principles to
problem solutions.

3.2 JUNG

The Java Universal Network/Graph Framework (JUNG) is a software library that pro-
vides a common and extendible language for the modeling, analysis, and visualization of
data that can be represented as a graph or network. Furthermore, it offers means to vi-
sualize the graph. JUNG was built using the Java programming language, thus allowing
us to directly integrate it into our evolutionary algorithm. For this Cytoscape plugin, it
is solely used for the local (Spring-based) layout optimization.

3.3 Measures

The fitness function can be created from a weighted composition of different measures.
Each measure describes a property of a graphical network. In this section we shall further
highlight each measure. The measures are based on previous research on properties
influencing the aesthetic visualizations of graphs [2] [1].

3.3.1 Edge Crossings

This measure is defined as the number of crossing edges divided by the number of edges
* (number of edges - 1). It is thought that the lower the number of crossing edges in a
visualized graph is, the less chaotic and thus the more conveniently arranged the graph
is represented. This should increase the usability of the graph. For some graphs, such as
the fully connected graph, edge crossingness should be inevitable.

5

3.3.2 Total Edge Length

This measure is defined as the total length of the edges divided by the total number of
edges. When the total length of edges is large this might indicate that the network is not
yet optimally arranged. When neighboring nodes are situated far apart, the length of
the edge connecting them is large as well. When neighboring nodes are near each other
the length of the edge connecting them is small. In general, a smaller total edge length
results in better visual graphs due to reduced visual complexity. On the other hand, you
might be more interested in graphs that are less dense. You can adjust this measure to
reflect your preference.

3.3.3 Edge Length Standard Deviation

When a graph is desired with edges with more or less the same length, a low standard
deviation can be used as a measure. If edges are allowed to ‘stretch’ more a higher
standard deviation can be used.

3.3.4 Average Distance to Adjacent Vertices

This measure returns the average distance of nodes which are connected with each other
with an edge. This can be used in the fitness function to group nodes which are neigh-
boring.

3.3.5 Average Distance to Non-Adjacent Vertices

This measure returns the average distance of nodes which are not connected with each
other with an edge. This can be used in the fitness function in combination with the
previous measure in order to promote clustering of nodes.

6

4 Developer Manual

This section describes how developers can extend the CEGA Layout plugin by developing
fitness measures and adding them to CEGA’s scripting engine. In future versions of this
manual, we will also describe how to take part in development of the CEGA framework.
In order to implement your own FitnessMeasure for use in CEGA’s fitness functions, you
need to implement the FitnessMeasure interface. Listing 1 shows an example implemen-
tation of a FitnessMeasure. Once you have implemented such a FitnessMeasure, you need
to make it accessible by CEGA and Cytoscape. CEGA uses utilities from the ocutils and
asm libraries to find all classes that implement a FitnessMeasure and adds them to the
ScriptEngine. You can make your code ‘detectable’ in several different ways:

• Add the .class file to the ”plugins” folder

• Add the .class file to the ”plugins/measures” folder (create the measures folder if
it does not exist)

• Build a .jar file and rename it to ”plugins/Measures.jar”

• Add the .class file to the classpath

• If you know what you’re doing, you could also add it to plugins/CEGA.jar

Listing 1: Multi-Page Java Code

1 package net . s f . cega . examples ;

import cytoscape . CyNetwork ;
import java . awt . geom . Point2D ;
import java . u t i l .Map;

6 import net . s f . cega . f i t n e s s . FitnessMeasure ;

/∗∗
∗ An Example FitnessMeasure .
∗ @author The CEGA pro j e c t

11 ∗/
pub l i c c l a s s ExampleMeasure implements FitnessMeasure {

/∗∗
∗ This performs the ac tua l computation o f your measure .

16 ∗ This example shows how to use the network and coo rd ina t e s .
∗ @param network This conta in s only the graph rep r e s en ta t i on ,
∗ not the v i s u a l i z a t i o n .
∗ @param coo rd ina t e s These are the coo rd ina t e s o f the nodes
∗ in a Map from node index (In t eg e r) to Point2D . Double

21 ∗ @return the computation r e s u l t o f the measure .
∗/

pub l i c double computeMeasure (CyNetwork network ,
Map<Integer , Point2D . Double> coo rd ina t e s) {

double totalAvg = 0 . 0 ;

7

26 i n t [] nodes = network . getNodeIndicesArray () ;
f o r (i n t node1 : nodes) {

i n t nNonAdjacent = 0 ;
double d i s t s ub = 0 . 0 ;
f o r (i n t node2 : nodes) {

31 i f (! network . edgeEx i s t s (node1 , node2)) {
nNonAdjacent++;
d i s t s ub += (coo rd ina t e s . get (node1))

. d i s t ance (coo rd ina t e s . get (node2)) ;
}

36 }
i f (nNonAdjacent != 0) {

totalAvg += d i s t s ub / nNonAdjacent ;
}

}
41 i f (nodes . l ength != 0) {

re turn totalAvg / nodes . l ength ;
} e l s e {

re turn 0 . 0 ;
}

46 }

/∗∗
∗ Spec i f y the f u l l d e s c r i p t i o n o f your new FitnessMeasure here .
∗ @return The f u l l d e s c r i p t i o n o f your measure .

51 ∗/
pub l i c S t r ing ge tDe s c r i p t i on () {

re turn ”Type the f u l l d e s c r i p t i o n o f your new measure . ” ;
}

56 /∗∗
∗ This i s where you s p e c i f y what name i s used to r e f e r to
∗ your new measure in the f i t n e s s func t i on . Use a shor t
∗ measure name without s p e c i a l cha ra c t e r s or spaces .
∗ @return The name o f your f i t n e s s measure .

61 ∗/
pub l i c S t r ing getName () {

re turn ”EM” ;
}

66 /∗∗
∗ Here you s p e c i f y a shor t d e s c r i p t i o n o f your measure .
∗ This i s used in the Layout S e t t i n g s GUI o f Cytoscape .
∗ @return A shor t d e s c r i p t i o n o f your measure .
∗/

71 pub l i c S t r ing ge tShor tDesc r ip t i on () {
re turn ”Test ing measure” ;

}
}

8

References

[1] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.

[2] H. Purchase, R. Cohen, and M. James. Validating graph drawing aesthetics. Lecture
Notes in Computer Science, 1027:435–446, 1998.

9

